Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models

The present study had the objective of modelling population fluctuation of chrysanthemum leaf miner (Liriomyza huidobrensis Blanchard), using the Box & Jenkins method, in order to find prediction models, which could represent and adequately predict population density of the insect at its lar...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Hernández Regalado, Evelia, Vera Graciano, Jorge, Ramírez Valverde, Gustavo, P´´erez Elizalde, Sergio, López Collado, José, Bautista Martínez, Néstor, M. Pinto, Victor
Format: Online
Język:spa
Wydane: Instituto de Ecología, A.C. 2009
Dostęp online:https://azm.ojs.inecol.mx/index.php/azm/article/view/588
_version_ 1799770042557005824
author Hernández Regalado, Evelia
Vera Graciano, Jorge
Ramírez Valverde, Gustavo
P´´erez Elizalde, Sergio
López Collado, José
Bautista Martínez, Néstor
M. Pinto, Victor
author_facet Hernández Regalado, Evelia
Vera Graciano, Jorge
Ramírez Valverde, Gustavo
P´´erez Elizalde, Sergio
López Collado, José
Bautista Martínez, Néstor
M. Pinto, Victor
author_sort Hernández Regalado, Evelia
collection AZM
description The present study had the objective of modelling population fluctuation of chrysanthemum leaf miner (Liriomyza huidobrensis Blanchard), using the Box & Jenkins method, in order to find prediction models, which could represent and adequately predict population density of the insect at its larval stage. The work was carried out in two four-month crop cycles. The number of insects was recorded periodically every two days, resulting in 61 observations for each crop cycle. The number of live larvae was registered by reading date, obtaining two time series. The first 55 observations of each series were analyzed to set the model according to the Box & Jenkins’ method, and the six final observations helped to validate the prediction capacity of the model found. In the process of identifying the model for the representation of each of the observed series, their transformation was tested, finding for series 1 that the transformation with square root had the most adequate fit, and for series 2, the transformation of Box-Cox with power (0.387455) was the most adequate. In both series, the autocorrelations (FAC) showed stationarity, and partial autocorrelations (FACP) were interrupted in autocorrelation 1. The estimated model for series 1 was Yt=0.246842 + 0.978041 Yt-1 , and for series 2, it was Yt= 0.283874 + 0.985939 Yt-1. The testing of the model fitted the data well, obtaining white noise in the residuals of FAC and FACP of the estimated models. Two stationary models of autoregressive time series of the AR (1) type were generated, representing the observed series of L. huidobrensis, well fitting the true behaviour of their populations and achieving to satisfactorily forecast future values of the insect population fluctuation.
format Online
id azm-article-588
institution Acta Zoológica Mexicana
language spa
publishDate 2009
publisher Instituto de Ecología, A.C.
record_format ojs
spelling azm-article-5882022-11-04T01:39:33Z Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models Pronóstico de la fluctuación poblacional del minador de la hoja de crisantemo Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae) mediante modelos de series de tiempo. Hernández Regalado, Evelia Vera Graciano, Jorge Ramírez Valverde, Gustavo P´´erez Elizalde, Sergio López Collado, José Bautista Martínez, Néstor M. Pinto, Victor Liriomyza huidobrensis mathematical models ARIMA pest prediction. Liriomyza huidobrensis modelos matemáticos ARIMA predicción de plagas. The present study had the objective of modelling population fluctuation of chrysanthemum leaf miner (Liriomyza huidobrensis Blanchard), using the Box & Jenkins method, in order to find prediction models, which could represent and adequately predict population density of the insect at its larval stage. The work was carried out in two four-month crop cycles. The number of insects was recorded periodically every two days, resulting in 61 observations for each crop cycle. The number of live larvae was registered by reading date, obtaining two time series. The first 55 observations of each series were analyzed to set the model according to the Box & Jenkins’ method, and the six final observations helped to validate the prediction capacity of the model found. In the process of identifying the model for the representation of each of the observed series, their transformation was tested, finding for series 1 that the transformation with square root had the most adequate fit, and for series 2, the transformation of Box-Cox with power (0.387455) was the most adequate. In both series, the autocorrelations (FAC) showed stationarity, and partial autocorrelations (FACP) were interrupted in autocorrelation 1. The estimated model for series 1 was Yt=0.246842 + 0.978041 Yt-1 , and for series 2, it was Yt= 0.283874 + 0.985939 Yt-1. The testing of the model fitted the data well, obtaining white noise in the residuals of FAC and FACP of the estimated models. Two stationary models of autoregressive time series of the AR (1) type were generated, representing the observed series of L. huidobrensis, well fitting the true behaviour of their populations and achieving to satisfactorily forecast future values of the insect population fluctuation. El presente trabajo se realizó con el propósito de modelar la fluctuación poblacional del minador de la hoja de crisantemo Liriomyza huidobrensis (Blanchard) a fin de encontrar modelos de predicción con el método de Box & Jenkins que pudieran representar y predecir la densidad de población del insecto en su estado de larva. Se trabajó en dos ciclos de cultivo con duración de cuatro meses cada uno obteniéndose dos poblaciones de insectos. El número de insectos se registró periódicamente cada dos días obteniendo 61 observaciones para cada ciclo de cultivo; por fecha de lectura se anotó el número de larvas vivas; teniendo así dos series de tiempo. Las primeras 55 observaciones de cada serie se analizaron para la obtención del modelo de acuerdo a la metodología de Box & Jenkins y las seis observaciones finales ayudaron a validar la capacidad de predicción del modelo encontrado. En el proceso de identificación del modelo para la representación de cada una de las series observadas se probaron transformaciones de éstas, siendo los ajustes más adecuados para la serie 1 la transformación con raíz cuadrada, y para la serie 2 la transformación de Box-Cox con potencia (0.387455). En ambas series las autocorrelaciones (FAC) denotaron estacionaridad y las autocorrelaciones parciales (FACP) se interrumpieron en la autocorrelación 1. El modelo estimado para la serie 1 fue Yt = 0.246842 + 0.978041 Yt-1 y para la serie 2 fue Yt = 0.283874 + 0.985939 Yt-1. La verificación del modelo ajustó bien los datos al obtener ruido blanco en los residuales de la FAC y FACP de los modelos estimados. Se generaron dos modelos estacionarios de series de tiempo autorregresivos del tipo AR (1) que representaron a las series observadas de L. huidobrensis, ajustandose bien al comportamiento real de sus poblaciones y logrando predecir satisfactoriamente valores de la fluctuación poblacional del insecto. Instituto de Ecología, A.C. 2009-04-15 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Original articles Artículos originales application/pdf https://azm.ojs.inecol.mx/index.php/azm/article/view/588 10.21829/azm.2009.251588 ACTA ZOOLÓGICA MEXICANA (N.S.); Vol. 25 No. 1 (2009); 21-32 ACTA ZOOLÓGICA MEXICANA (N.S.); Vol. 25 Núm. 1 (2009); 21-32 2448-8445 0065-1737 spa https://azm.ojs.inecol.mx/index.php/azm/article/view/588/757 Derechos de autor 2009 ACTA ZOOLÓGICA MEXICANA (N.S.) http://creativecommons.org/licenses/by-nc-sa/4.0
spellingShingle Hernández Regalado, Evelia
Vera Graciano, Jorge
Ramírez Valverde, Gustavo
P´´erez Elizalde, Sergio
López Collado, José
Bautista Martínez, Néstor
M. Pinto, Victor
Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models
title Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models
title_full Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models
title_fullStr Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models
title_full_unstemmed Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models
title_short Prediction of the population fluctuation of the Chrysanthemum leaf miner Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), using time series models
title_sort prediction of the population fluctuation of the chrysanthemum leaf miner liriomyza huidobrensis blanchard (diptera: agromyzidae), using time series models
url https://azm.ojs.inecol.mx/index.php/azm/article/view/588
work_keys_str_mv AT hernandezregaladoevelia predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT veragracianojorge predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT ramirezvalverdegustavo predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT perezelizaldesergio predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT lopezcolladojose predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT bautistamartineznestor predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT mpintovictor predictionofthepopulationfluctuationofthechrysanthemumleafminerliriomyzahuidobrensisblancharddipteraagromyzidaeusingtimeseriesmodels
AT hernandezregaladoevelia pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo
AT veragracianojorge pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo
AT ramirezvalverdegustavo pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo
AT perezelizaldesergio pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo
AT lopezcolladojose pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo
AT bautistamartineznestor pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo
AT mpintovictor pronosticodelafluctuacionpoblacionaldelminadordelahojadecrisantemoliriomyzahuidobrensisblancharddipteraagromyzidaemediantemodelosdeseriesdetiempo